Component-based discriminative classification for hidden Markov models
نویسندگان
چکیده
Article history: Received 15 September 2008 Received in revised form 10 March 2009 Accepted 18 March 2009
منابع مشابه
Action Classification using a Discriminative Non-Parametric Hidden Markov Model
We classify human actions occurring in videos, using the skeletal joint positions extracted from a depth image sequence as features. Each action class is represented by a non-parametric Hidden Markov Model (NP-HMM) and the model parameters are learnt in a discriminative way. Specifically, we use a Bayesian framework based on Hierarchical Dirichlet Process (HDP) to automatically infer the cardin...
متن کاملEvaluation of the Hidden Markov Model for Detection of P300 in EEG Signals
Introduction: Evoked potentials arisen by stimulating the brain can be utilized as a communication tool between humans and machines. Most brain-computer interface (BCI) systems use the P300 component, which is an evoked potential. In this paper, we evaluate the use of the hidden Markov model (HMM) for detection of P300. Materials and Methods: The wavelet transforms, wavelet-enhanced indepen...
متن کاملSpeech enhancement based on hidden Markov model using sparse code shrinkage
This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...
متن کاملDensity Ratio Hidden Markov Models
Hidden Markov models and their variants are the predominant sequential classification method in such domains as speech recognition, bioinformatics and natural language processing. Being generative rather than discriminative models, however, their classification performance is a drawback. In this paper we apply ideas from the field of density ratio estimation to bypass the difficult step of lear...
متن کاملA Fast Discriminative Training Algorithm for Minimum Classification Error
In this paper a new algorithm is proposed for fast discriminative training of hidden Markov models (HMMs) based on minimum classification error (MCE). The algorithm is able to train acoustic models in a few iterations, thus overcoming the slow training speed typical of discriminative training methods based on gradient-descendent. The algorithm tries to cancel the gradient of the objective funct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 42 شماره
صفحات -
تاریخ انتشار 2009